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1 Abstract 27 

Plants exposed to stress due to pollution, disease or nutrient deficiency often develop visible 28 

symptoms on leaves such as spots, colour changes and necrotic regions. Early symptom detection is 29 

important for precision agriculture, environmental monitoring using bio-indicators and quality 30 

assessment of leafy vegetables. Leaf injury is usually assessed by visual inspection, which is labour-31 

intensive and to a considerable extent subjective. In this study, methods for classifying individual 32 

pixels as healthy or injured from images of clover leaves exposed to the air pollutant ozone were tested 33 

and compared. RGB images of the leaves were acquired under controlled conditions in a laboratory 34 

using a standard digital SLR camera. Different feature vectors were extracted from the images by 35 

including different colour and texture (spatial) information. Four approaches to classification were 36 

evaluated: (1) Fit to a Pattern Multivariate Image Analysis (FPM) combined with T
2
 statistics (FPM-37 

T
2
) or (2) Residual Sum of Squares statistics (FPM-RSS), (3) linear discriminant analysis (LDA) and 38 

(4) K-means clustering. The predicted leaf pixel classifications were trained from and compared to 39 

manually segmented images to evaluate classification performance. The LDA classifier outperformed 40 

the three other approaches in pixel identification with significantly higher accuracy, precision, true 41 

positive rate and F-score and significantly lower false positive rate and computation time. A feature 42 

vector of single pixel colour channel intensities was sufficient for capturing the information relevant 43 

for pixel identification. Including neighbourhood pixel information in the feature vector did not 44 

improve performance, but significantly increased the computation time. The LDA classifier was robust 45 

with 95% mean accuracy, 83% mean true positive rate and 2% mean false positive rate, indicating that 46 

it has potential for real-time applications.  47 

Key words: classification, feature extraction, Fit to a Pattern Model approach (FPM), linear 48 

discriminant analysis (LDA), K-means clustering, multivariate image analysis.  49 

  50 
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2 Introduction 51 

Plants are exposed to a wide variety of stresses including disease, nutrient deficiency, drought and 52 

pollution which can affect growth, the diversity of natural vegetation and crop production. These 53 

stresses often give rise to visual symptoms on the leaf surfaces such as spots, streaks, colour changes 54 

and necrotic regions. Visible lesions may initially be difficult to distinguish from healthy leaf regions 55 

and may change in colour, shape and size as the lesion develops. Leaf injury, regardless of the cause, 56 

is usually assessed by visual inspection. This procedure relies on human experts and is time-57 

consuming, labour-intensive and to some extent inconsistent (Bock et al., 2010). Digital image 58 

analysis has the potential for providing rapid, consistent and non-destructive leaf inspection at 59 

reasonable costs. Such systems can be used in crop management for targeted application of 60 

fungicides/pesticides/herbicides or fertilizers, quality inspection of leafy agricultural products or 61 

environmental monitoring using bio-indicators.  62 

Ground-level ozone pollution is a global air pollution problem resulting in reduced crop yield and 63 

quality. Global crop production losses due to ozone pollution for the year 2000 are estimated to be 64 

US$11-18 billion (Avnery et al., 2011a) and are projected to reach up to US$35 billion by 2030 65 

(Avnery et al., 2011b). Ozone exposure often results in visible leaf injuries characterized by chlorotic 66 

and necrotic spots or regions across the leaf surface and subsequent leaf senescence and abscission 67 

(Wilkinson et al., 2012). Clover (Trifolium), an important pasture crop, readily develops visible 68 

symptoms and has been used as an ozone bio-indicator and to develop critical levels for plant ozone 69 

effects within the UN-ECE Convention on Long-Range Transboundary Air Pollution (Karlsson et al., 70 

2003; Karlsson et al., 2009). 71 

Several studies have explored methods based on image processing for classifying whole leaves into 72 

categories for purposes such as plant species identification (Cope et al., 2012; Gwo et al., 2013), crop 73 

and weed discrimination (Ahmed et al., 2012; Arribas et al., 2011), determination of healthy and 74 

diseased plants (Pydipati et al., 2006; Xu et al., 2011) as well as leaf quality grading for the consumer 75 

market (Lunadei et al., 2012; Zhang and Zhang, 2011). These studies do not, however, consider 76 

classification of individual leaf pixels.  Identifying leaf pixels or regions that deviate from normal leaf 77 
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pixels could reveal disease or injury at an early stage, characterize the severity or stage of the leaf 78 

lesion and enable diagnosis of the lesion according to disease type.  79 

A common approach to leaf region/pixel classification is often to segment the region of interest, 80 

extract relevant features from the selected region and use these features for region classification by 81 

some classifier. Huang (2007) developed a classification system to identify leaf lesions from three 82 

different orchid diseases. Infected leaf areas were first segmented from the background using an 83 

exponential transformation and standard image processing techniques. Texture features derived from 84 

the grey level co-occurrence matrix (GLCM) and colour features were used to classify these extracted 85 

areas using a back-propagation neural network classifier. Camargo and Smith (2009a) used a 86 

segmentation procedure based on the distribution of the intensity histogram of colour transformed leaf 87 

images followed by post-processing using morphological operations to remove pixel regions not 88 

considered part of the region of interest. The procedure performed well in some cases with around 89 

90% identified diseased pixels, but poorly in other cases with around 50-60% identified diseased 90 

pixels. Once the diseased region was identified, texture-related features of the region were used as 91 

discriminators for support vector machine classification of the type of disease (Camargo and Smith, 92 

2009b). Zhang and Meng (2011) used a boosting algorithm to select significant features for 93 

segmenting the leaf lesion from the background followed by extraction of zone-based local texture 94 

features for classification of the lesion type and obtained classification rates similar to human experts.  95 

Another more direct approach is to classify leaf pixels directly without the use of segmentation. Boese 96 

et al. (2008) used an unsupervised algorithm to group leaf pixels with similar RGB values into a user 97 

given number of classes. These classes were then defined by the user as healthy, diseased or injured 98 

leaf areas. Accuracy, precision, recall and computation time of the method were not reported. Sanyal 99 

and Patel (2008) used a feature vector that combined colour and 7×7 pixel neighbourhood information 100 

extracted from leaf images and a multilayer perceptron classifier to detect two different diseases on 101 

rice leaf surfaces. Although an overall pixel classification accuracy of 89% was stated, the precision, 102 

recall and computation time of the method were not discussed. Bauer et al. (2011) tested two pixelwise 103 

methods, k-nearest neighbour and a Gaussian mixture (GM) model, and one global probabilistic model 104 
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(conditional random field (CRF) model) for classifying diseased leaf pixels from stereo images of 105 

sugar beet leaves infected with two types of fungi. Although the kNN classifier used long computation 106 

time and did not achieve the desired classification rate levels, the GM and the CRF models were 107 

promising, with the GM model giving classification rates in the range 86%-94%. The best 108 

classification rates were obtained when using a feature vector that included colour as well as 4-109 

connected neighbour pixel information. Other neighbourhood relations were not tested.  Both GM and 110 

CRF models, however, require finding appropriate model parameters, such as the weighting functions 111 

and number of and parameters of Gaussian distributions for GM models and parameters of the energy 112 

function for CRF models which may be difficult to solve for exactly (Bauer et al., 2011). 113 

In this study, we test and compare four approaches for classifying individual leaf pixels directly as 114 

healthy or injured from clover leaf RGB images with different degrees of ozone-induced visible 115 

injuries. The aim was to determine which combination of feature vector and classifier provided the 116 

superior all-round classification performance. Different feature vectors were derived from the images 117 

by including different colour and texture information. Three colour spaces, (1) the original RGB 118 

colour space, (2) the CIE 1976 L*a*b* colour space (McLaren, 1976) and (3) the CIE 1976 uniform 119 

chromaticity scale diagram (UCS) (CIE, 1986), were compared to determine which colour space was 120 

best suited to capture leaf injury. Texture characteristics were included by considering two-121 

dimensional square windows of different sizes of neighbour pixel intensity values for each pixel 122 

(Bharati et al., 2004; Prats-Montalbán et al., 2011).  123 

Four classification approaches were compared in this study: (1) Fit to a Pattern Multivariate Image 124 

Analysis (FPM) combined with T
2
 statistics (FPM-T

2
), (2) Fit to a Pattern Multivariate Image Analysis 125 

(FPM) combined with Residual Sum of Squares statistics (FPM-RSS) (Prats-Montalbán, 2005), (3) 126 

linear discriminant analysis (LDA) (Fisher, 1936) and (4) the commonly used K-means clustering 127 

(Jain, 2010). The Fit to a Pattern MIA approach was chosen as it is a general approach for defect 128 

detection in random colour textures (Prats-Montalbán, 2005) and has been used successfully in several 129 

applications such as identifying diseased areas on citrus fruits (Lopez-Garcia et al., 2010), detecting 130 

defects on ceramic tiles and high quality stone surfaces (Lopez et al., 2006; Prats-Montalbán and 131 
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Ferrer, 2007) as well as in metallurgic problems (Bharati et al., 2004). It was chosen as leaf ozone 132 

lesions can be regarded as defects on a leaf surface. The LDA and K-means techniques (Michie et al., 133 

1994; Ripley, 1996) are standard and robust classification methods, applicable also to large datasets, 134 

as in the present study, where the training set consisted of several million pixels and the test set of 135 

several hundred thousand pixels to be classified. The LDA and K-means methods were therefore 136 

chosen instead of, for example, a multilayer perceptron classifier as used by Sanyal and Patel (2008) 137 

for leaf pixel classification, which due to the nonlinear dependence of the cost function on the 138 

unknown parameters, can converge slowly and nonsmoothly. In addition, the LDA and K-means 139 

techniques do not require considerable heuristic parameter tuning, as do other classifiers such as 140 

Gaussian mixture, multilayer perceptron or conditional random field models.  The resulting leaf pixel 141 

classifications were compared to manually segmented images representing the ground-truth to evaluate 142 

classification performance.  143 

3 Materials and methods 144 

3.1 The image datasets  145 

The leaf images originated from studies of leaf injuries induced by ozone in the ozone sensitive 146 

species subterranean clover (Trifolium subterraneum L.), (see Vollsnes et al., 2009 for experimental 147 

details). T. subterraneum L. (Svalöf Weibull AB, Svalöf, Sweden) seeds were germinated in trays 148 

containing sandy peat soil and transplanted individually into pots containing sandy peat soil after 149 

fourteen days. The plants were kept in an environmentally controlled growth room at 20±1°C,  >60% 150 

relative humidity and with a 16 h light/ 8 h dark cycle. Ozone treatment started when the plants were 151 

31 days old and was applied for six hours during midday (10:00 to 16:00) for three consecutive days. 152 

During ozone treatment, plants were positioned randomly in six Perspex ozone exposure chambers (l, 153 

w, h = 420320400 mm). Plants in three exposure chambers were exposed to charcoal-filtered air 154 

supplemented with ozone giving a 70±10 ppb ozone level for six hours per day for three days. This 155 

ozone level is realistic for short-term ozone exposure during the growing season in northern 156 

Fennoscandia (Manning et al., 2009). The plants in the other three chambers were used as controls and 157 

were exposed to six hours per day for three days of charcoal-filtered air containing very little ozone 158 
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(~1-3 ppb ozone). Apart from the exposure to ozone, ozone exposed and control plants were treated 159 

identically. Ozone was generated by passing pure oxygen through an ozone generator (model GSG 160 

001.2, Sorbios GmbH, Berlin, Germany) and ozone concentrations inside the exposure chambers were 161 

recorded by an ozone analyzer (Photometric O3 Analyzer- Model 400, Advanced Pollution 162 

Instrumentation Inc., San Diego, CA, USA). 163 

Trifoliate leaves of ozone exposed and control plants were imaged during the mornings and afternoons 164 

of the three days of ozone treatment and for two days following treatment. Thereafter, leaves were 165 

imaged once per day until harvest eight days after the start of ozone treatment. All leaves were 166 

assessed by plant physiologists with extensive experience with ozone-induced foliar injury. Ozone 167 

exposed leaves developed necrotic regions and spots characteristic of ozone damage whereas none of 168 

the control plants had visible ozone-induced leaf injuries. 24-bits RGB images of the leaves were 169 

taken using a Canon EOS 20D SLR camera with a 100 mm lens giving images of 3504 × 2336 pixels 170 

at a resolution of 0.021 mm/pixel. Images were taken in the RAW image format and converted to 171 

lossless TIFF images. Leaves were illuminated by two 650 W halogen lamps. The camera’s shutter 172 

time was set to 1/15 s to smooth out variations caused by the AC electric power. The aperture was set 173 

to F20. The white balance was set to Auto and checked using a sheet of white paper. Leaves were 174 

gently pressed against a glass surface to ensure that they were flat during imaging. The glass surface 175 

also ensured homogeneous illumination over the leaf surface as well as homogeneous light conditions 176 

between different leaves and at different imaging times. 177 

As illustrated in Fig. 1, a clover leaf consists of three leaflets (i.e. a trifoliate leaf). An area of 300 × 178 

300 pixels was cropped from each leaflet.  Thirty six 300 × 300 pixel images (12 representative plants 179 

selected by experts from a set of 72 images of ozone exposed leaves × 3 leaflets) with different 180 

degrees of injury (see Fig. 1 h – m) formed the first image set used to evaluate pixel classification 181 

performance of the four classification approaches.  The selected leaves displayed typical ozone 182 

damage as well as typical natural background variation of different colour tones and grades. In short, 183 

the leaves were typical and representative of ozone damaged clover leaves. 184 
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Binary masks (Fig. 1e-g) were made for these 36 images where pixels in the image were classified 185 

manually as healthy or injured. Images of these leaves taken before ozone exposure were used as 186 

comparisons to avoid incorrect assignment of natural background variation as ozone injury. These 187 

binary masks were assumed to represent the ground-truth and were used to assess pixel classification 188 

performance.  189 

A second, separate image set consisting of one hundred whole clover leaves and not only the cropped 190 

leaflet areas, was used to test the applicability of the classification approaches to real leaves. Forty 191 

four ozone injured and fifty six healthy, control leaf images were included in this set. As no ground-192 

truth masks were made for these ozone injured leaves, this set was used for a more qualitative 193 

assessment of the classification approaches.  194 

3.2 Image feature extraction 195 

Three colour spaces were compared to determine which colour space best captured the colour 196 

information required to discriminate between injured and healthy pixels. The original RGB colour 197 

space, the CIE 1976 L*a*b* colour space (McLaren, 1976) and the CIE 1976 uniform chromaticity 198 

scale diagram (UCS) (CIE, 1986) were used. The CIE 1976 L*a*b* is pragmatically constructed to 199 

separate the RGB colour space into visually opponent colours of Red/Green (a) and Yellow/Blue (b) 200 

and the achromatic lightness (L). The L signal is the image achromatic greyscale representation, which 201 

differs from the widely used (R+G+B)/3 greyscale mean representation. The (UCS) transforms the 202 

RGB image into a uniform chromatic scaled image by a pragmatic linear transformation compatible 203 

with the human ability to detect equidistant colours. 204 

The images were unfolded in a specific manner into a 2-D feature matrix X, as described in detail by 205 

Bharati et al. (2004) and Prats-Montalbán et al. (2011). The unfolding includes the neighbours of 206 

every pixel of interest to capture spatial information. Which neighbouring pixels to include is 207 

controlled by a window that can be varied in shape and size (Prats-Montalbán, 2005). Quadratic 208 

neighbourhood windows with sides w of an odd number of pixels usually in the range 3 to 49 pixels 209 

are often used (Lopez-Garcia et al., 2010; Prats-Montalbán and Ferrer, 2007). In this study, window 210 
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sizes w = 2K +1, where K = 0, 1 and 2, were used giving windows of 1×1, 3×3 and 5×5. For K = 0, 211 

only the pixel of interest (single pixel) was included, not the neighbouring pixels. This unfolding was 212 

done for each of the colour bands (e.g. R, G, and B in the RGB colour space) to retain colour 213 

information and the unfolded matrices of these bands were concatenated horizontally. Thus, for K = 1 214 

giving a 3×3 neighbourhood window, the pixel i in row n and column m of the image is given by the 215 

row vector: 216 

Xi = r(n-1, m-1), r(n, m-1), r(n+1, m-1), .., r(n+1, m+1), 217 

g(n-1, m-1), g(n, m-1), g(n+1, m-1), .., g(n+1, m+1),       (1) 218 

b(n-1, m-1), b(n, m-1), b(n+1, m-1), .., b(n+1, m+1) 219 

as illustrated in Fig. 2. For an N × N colour image, the unfolding technique gives a colour-spatial 220 

feature matrix X of (N-w+1)
2
 × (w

2
×3) where each row corresponds to the feature row vector Xi of the 221 

pixel of interest. The correction term (–w+1) in the number of rows (N-w+1)
2

 was introduced to avoid 222 

special handling of image border pixels (i.e. border pixels were not used as pixels of interest for 223 

window sizes larger than 1×1) (Prats-Montalbán and Ferrer, 2007).  Thus, for the 3×3 neighbourhood 224 

window case, the feature matrix dimension for an N × N colour image is [(N-2) × (N-2)] ×(9×3). 225 

3.3 Pixel classification methods 226 

Four classification methods were tested to evaluate their performance in identifying pixels 227 

representing injured areas on the leaf surfaces. Three of these methods were supervised, (1) Fit to a 228 

Pattern MIA approach combined with T
2
 (FPM-T

2
) or (2) RSS statistics (FPM-RSS), and (3) linear 229 

discriminant analysis (LDA). The fourth method was unsupervised, (4) K-means clustering.  230 

For the first image set of cropped leaflet images, the classification models were validated using a 231 

“leave-one-plant-out” approach where each plant was sequentially left out of the model training and 232 

instead used to test the classification model accuracy, as illustrated in Fig. 3. Thus, the pixels 233 

belonging to one plant (e.g. pixels from the three leaflet images) were used as the test set (Xtest) (see 234 

Fig. 3). The pixels from all other 11 plants (i.e. 3×11 images) were compiled into the training matrix 235 

Xtrain. Thus, when the images were unfolded without using neighbouring pixels (i.e. 1×1 window), the 236 
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training matrix Xtrain consisted of 300 × 300 × 33 = 2 970 000 pixels (i.e. samples), and the test set 237 

consisted of 300×300×3 = 270 000 pixels to be classified. The Ytest and Ytrain group membership 238 

vectors for the corresponding pixels were created using the manually made masks, as illustrated in Fig. 239 

3. 240 

In the case of the second image set of whole leaves, the classification models were trained using all 241 

thirty six cropped leaflet images from the first image set as ground-truth masks (and hence the Ytrain 242 

vector) were available for this set. In addition, as a comparison, ten healthy control leaves not exposed 243 

to ozone, giving an additional thirty (10 plants × 3 leaflets)  300 × 300 pixel leaflet images, were 244 

added to the training set to test whether including healthy leaves in the model training affected pixel 245 

classification. Hence, this second training set consisted of 22 individual leaves, both healthy and ozone 246 

injured, from different representative plants, giving a total of 66 leaflet images (or about six million 247 

pixels) for training. No Ytest group membership vectors were made for this second image set. 248 

3.3.1 FPM-T
2
 249 

In the FPM approach, the pixels in the training set, Xtrain, were used to build a Principal Component 250 

Analysis (PCA) model to which the test set Xtest was compared (Prats-Montalbán, 2005), as depicted in 251 

Fig. 4.  First, Xtrain was scaled to mean centre using the mean of the pixels that according to the 252 

ground-truth binary masks were free of defects (i.e. healthy pixels). PCA was then applied on the 253 

mean centred Xtrain matrix to compress the image information into a reduced number of uncorrelated 254 

(orthogonal) variables, called principal components (PCs) (Mardia et al., 1979). PCA projects the 255 

original variables onto new ones, called latent variables, orthogonal and arranged according to their 256 

eigenvalue, giving  257 

X = TP
T
 + E            (2) 258 

where T (I×A) and P (J×A) are the scores and loading matrices for A principal components 259 

(Arank(X)) (Næs et al., 2002), and I and J are the number of rows and columns in Xtrain, respectively. 260 

The residual matrix E contains the unexplained data variability from the fitted model.  261 
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The FPM approach uses two parameters, the optimal number of principal components for the PCA 262 

model and a threshold limit that separates healthy from injured pixels. To determine the number of 263 

principal components, the reference eigenspace P was calculated stepwise from one to a maximum of 264 

ten principal components (see Fig. 4). For each of these ten models, the T
2
 statistics (or D-statistics) of 265 

every pixel in Xtrain was calculated using 266 

𝑇𝑖
2 = ∑

𝑡𝑖𝑎
2

𝜎𝑎
2

𝐴
𝑎=1           (3) 267 

where tia is the score value of pixel i in principal component a, and σa
2
 is the variance in principal 268 

component a. The T
2
 value summarizes the score values for each pixel and provides a measure of the 269 

variation of each pixel inside the model. In short, 𝑇𝑖
2 is the Mahalanobis distance with respect to the 270 

model’s mean of the pixel neighbourhood projected onto the subspace defined by the A retained 271 

principal components (López et al., 2006).  272 

To discriminate between healthy and injured pixels, an optimal threshold T
2 
level 𝑇𝐻

2 was found by 273 

systematically testing the classification accuracy of equally spaced values of T
2
 until the highest 274 

accuracy was obtained (Fig. 4). Pixels with T
2
 values larger than the threshold limit 𝑇𝐻

2  corresponded 275 

to pixels with extreme values and were defined as belonging to injured leaf areas. Pixels with values 276 

lower than 𝑇𝐻
2 fit the healthy model and were classified as healthy. The threshold limit 𝑇𝐻

2 and the 277 

number of PCs included in the PCA model which provided the highest overall pixel classification 278 

accuracy, were selected, giving the model reference eigenspace P* used to classify the test set.  279 

The mean centred Xtest matrix was then projected onto the selected reference eigenspace P* (see Fig. 280 

4), enabling the score matrix Ttest, the pixel components in the space spanned by the principal 281 

components, to be computed: 282 

Ttest = XtestP*        (4) 283 

The T
2
 values of the pixels in the test set (𝑇𝑡𝑒𝑠𝑡,𝑖

2 ) were calculated from Ttest using Eq. (3). Pixels with 284 

T
2
 values larger than the chosen threshold limit 𝑇𝐻

2 corresponded to pixels with extreme values, but 285 

still maintaining the colour and spatial information correlation structure (Prats-Montalban and Ferrer, 286 
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2007), and were classified as belonging to injured pixels. The predicted classification results for all 287 

pixels in the test set were collected in Ŷ, the predicted group membership vector, as follows: 288 

𝑌𝑖̂ = {
0, 𝑇𝑡𝑒𝑠𝑡,𝑖

2 ≤ 𝑇𝐻
2

1, 𝑇𝑡𝑒𝑠𝑡,𝑖
2 > 𝑇𝐻

2 .       (5) 289 

3.3.2 FPM-RSS 290 

The residual matrix Etrain of the training set was calculated from Eq. (2) as 291 

 𝑬𝒕𝒓𝒂𝒊𝒏 = 𝑿𝒕𝒓𝒂𝒊𝒏 − 𝑻𝒕𝒓𝒂𝒊𝒏𝑷𝒋
𝑻             (6) 292 

where Pj is the eigenspace for the PCA model with j = 1 to 10 PCs as described in the previous section 293 

(see Fig. 4). For each of these ten models, the residual matrix Etrain was used to calculate the Residual 294 

Sum of Squares (RSS) (also known as Q-statistics) for the FPM method. For each pixel i in the 295 

training set: 296 

𝑅𝑆𝑆i = ∑ 𝐸ia
2A

a=1           (7) 297 

The RSS values represent the squared Euclidean distance to the subspace defined by the principal 298 

components and capture how well the pixels comply with the model (Prats-Montalbán and Ferrer, 299 

2007). The RSS limit, RSSH, between healthy and injured pixels was found using the same procedure 300 

used to determine the threshold limit 𝑇𝐻
2, by systematically testing the classification accuracy of 301 

different RSS limits (refer to Fig. 4). Pixels with RSS-statistic values larger than the threshold RSSH 302 

corresponded to pixels that did not behave in the same manner as the ones used to create the model, in 303 

the sense that there is a breakage in the colour and spatial correlation structure of the model. The 304 

model P* with the number of PCs and RSS limit, RSSH, giving the highest accuracy was selected for 305 

classifying the test set Xtest. The residual matrix Etest for the test set was calculated using Eqs. 4 and 6 306 

as 𝑬𝒕𝒆𝒔𝒕 = 𝑿𝒕𝒆𝒔𝒕 − 𝑻𝒕𝒆𝒔𝒕𝑷∗𝑻, from which the RSS-statistics of the pixels in the test set (RSStest,i) were 307 

calculated using Eq. (7) (see Fig. 4). Pixels with RSS-values larger than the threshold RSSH had 308 

extreme values and were classified as injured. The predicted group membership vector Ŷ of the pixels 309 

in the test set was given as follows:  310 
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𝑌𝑖̂ = {
0, 𝑅𝑆𝑆𝑡𝑒𝑠𝑡,𝑖 ≤ 𝑅𝑆𝑆𝐻

1, 𝑅𝑆𝑆𝑡𝑒𝑠𝑡,𝑖 > 𝑅𝑆𝑆𝐻
.     (8) 311 

3.3.3 K-means clustering 312 

As shown in Fig. 1, injured pixels were more similar to each other than to uninjured pixels. It may 313 

therefore be possible to identify injured and uninjured pixels by clustering the pixels that were most 314 

similar. The widely K-means clustering algorithm splits the dataset into K homogeneous clusters, is 315 

fast, usually requiring only a few iterations to converge and can thus be used on large datasets. The 316 

number of clusters is an input parameter to the algorithm which assigns the pixels in the image to the 317 

K predefined clusters by minimizing the sum, over all classes, of the within-clusters sums of pixel-to-318 

clusters-centroid distances (Ripley, 1996).  319 

The K-means clustering algorithm was run directly on the Xtrain matrix starting at a randomly selected 320 

data point. The K-means algorithm was run for different numbers (2 – 10) of clusters to determine the 321 

optimal number required to capture the injured pixels in the image. After each run, the clusters were 322 

compared to the manually made binary masks to identify which clusters corresponded most to injured 323 

pixels and to estimate the classification accuracy. The run providing the best overall classification 324 

result was used to determine the number of required clusters and which clusters corresponded to 325 

injured pixels. The centroids k for these K clusters, where k  {1,…, K}  were then used to 326 

calculate the Euclidean distance to each pixel xi in the Xtest matrix. The pixels were assigned to the 327 

cluster with the closest centroid (Euclidian distance), enabling classification of the pixels xi in the test 328 

set and giving the predicted group membership vector Ŷ as follows: 329 

𝑌̂𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘 ‖𝒙𝑖 − 𝝁𝑘‖2.     (9) 330 

3.3.4 Linear discriminant analysis (LDA) 331 

Fisher's Linear Discriminant Analysis (Fisher, 1936; Mardia et al., 1979; Rao, 1948) is a statistical 332 

classification method developed by assuming the involved groups to share a joint multinormal 333 

covariance structure in the feature space. The robustness of LDA, even when the model assumptions 334 
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are violated to some extent, was documented in an extensive comparison study by Michie et al. (1994) 335 

of 22 different classification methods, where LDA (referred to as "DISCRIM") was ranked top three 336 

among the classification methods most frequently performing best on a large number of different 337 

classification problems. With a given number of G groups or classes (G = 2 classes, injured or healthy 338 

pixels, in the present study), LDA implicitly identifies a G-1 dimensional subspace of the feature 339 

space accounting for all the information relevant for group separation. Robustness for the present pixel 340 

classification application using LDA is mainly assured by the large number of available pixels (i.e. 341 

300 × 300 pixels per leaflet image) compared to the small number of features (maximum 75, 3 colour 342 

channels × no. pixels in neighbourhood window) characterizing each pixel. 343 

An LDA model was built based on the Xtrain matrix and the manually created masks Ytrain 344 

corresponding to these pixels. From the model building we obtained the two class centres, 0 and 1, 345 

and the within groups covariance matrix . In LDA, classification of the pixels xi in the test set Xtest, 346 

yields the predicted group membership vector Ŷ by a simple rule comparing Mahalanobis distances 347 

between the observed pixel and the class centres: 348 

𝑌̂𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔{0,1}(𝒙𝑖 − 𝝁𝒈)
𝑡
−𝟏(𝒙𝑖 − 𝝁𝒈).  (10) 349 

Contrary to the other classifiers, LDA does not require heuristic parameter tuning/optimization such as 350 

selection of model complexity (like the number of latent variables in PCA or PLS models), threshold 351 

limit selection (as for the FPM methods) or selection of the number of clusters (as for the K-means 352 

method).  353 

 354 

3.4 Defect maps 355 

By folding the predicted group membership vectors Ŷ (Eqs. 5, 8, 9, 10) back into binary 2-D matrices, 356 

we obtain the so-called defect maps. Defect maps are appropriate for visualization and evaluation of 357 

the pixels classified as injured or healthy by comparison to both the corresponding original leaflet 358 

images (Fig. 1) and corresponding binary masks (subjective ground-truth). 359 

3.5 Performance measures 360 
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Comparison between the predicted group membership vector Ŷ for each classification (Eqs. 5, 8, 9, 361 

10) and the ground-truth given in Ytest enabled calculation of the following: 362 

True positives, tp, representing the number of injured pixels correctly classified as injured,  363 

True negatives, tn, representing the number of healthy pixels correctly classified as healthy,  364 

False positives, fp, representing the number of healthy pixels misclassified as injured,  365 

False negatives, fn, representing the number of injured pixels misclassified as healthy.  366 

These calculations were used to determine the following five performance measures:  367 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑡𝑝

𝑡𝑝+𝑓𝑛
    ,   (

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑖𝑛𝑗𝑢𝑟𝑒𝑑) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑖𝑛𝑗𝑢𝑟𝑒𝑑)
) 368 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑓𝑝

𝑓𝑝+𝑡𝑛
  ,  (

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (ℎ𝑒𝑎𝑙𝑡ℎ𝑦) 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (ℎ𝑒𝑎𝑙𝑡ℎ𝑦)
) 369 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
    ,   (

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑖𝑛𝑗𝑢𝑟𝑒𝑑) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑖𝑛𝑗𝑢𝑟𝑒𝑑)
) 370 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
  ,  (𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) 371 

𝐹-𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  372 

These are measures of how well the different methods perform in classifying injured pixels from the 373 

healthy background. Because neither Precision nor Recall is a good stand-alone parameter for 374 

performance we also included the (associated) F-score (Lopez-Garcia et al., 2010). 375 

The computation timing results required by each combination of feature vector and classification 376 

method were obtained using a single threaded code in a standard computer (HP EliteBook 8460p, 8 377 

GB RAM, Intel i5, 2.5 GHz dual core processor) and Microsoft Windows 7 (Service Pack 1) operating 378 

system. The computation time for feature extraction and pixel classification by one classifier for all 12 379 

plants (all 36 cropped leaflet images of the first image set) was recorded, and divided by 12 to give the 380 

calculation time required for one plant (i.e. three leaflet images). 381 

3.6 Statistical Analysis 382 

(11) 
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A coincidence matrix with the number of true positives (tp), false positive (fp), false negative (fn) and 383 

true negative (tn) was obtained for each classification. The fractions of each of these values (sum = 1) 384 

were used for statistical analyses in a two-step procedure to quantify classifier comparisons. After 385 

verifying the normality of the percentages, ANOVA (Montgomery, 2005) analyses with a significance 386 

level of 5% were conducted on the performance data of the four classifiers (LDA, FPM-T
2
, FPM-RSS 387 

and K-means clustering) enabling between classifier comparisons. The performance within each 388 

classifier was evaluated by analysing the effects of the feature matrices based on the different colour 389 

spaces and pixel neighbourhoods on the classification results. Since all data were derived from a 390 

Design of Experiments, interactions were also analysed. Response variables studied were the five 391 

performance measures (Eq. 11).  392 

3.7 Calculations 393 

All calculations were performed in MATLAB® (v. 8.01, R2013a, The MathWorks, Inc., Natick, MA, 394 

USA) in combination with the MATLAB compatible PLS-Toolbox® (v. 7.0.3, Eigenvector Research 395 

Inc., Wenatchee, WA, USA). 396 

Statistical analyses were conducted in the MATLAB Statistics Toolbox v. 8.2. 397 

4 Results and discussion 398 

The results listed in Table 1 show that the LDA method significantly outperformed the three other 399 

classification methods in pixel identification with significantly higher accuracy, precision, true 400 

positive rate and F-score as well as significantly lower false positive rate and computation time. K-401 

means performed significantly better than the two Fit to a Pattern MIA approaches, which had similar 402 

performances, apart from a significantly higher precision for the FPM-T
2
 compared to the FPM-RSS. 403 

The RSS statistic generally captures more noise thereby hindering clear detection of defective areas. 404 

Given the iterative nature of the K-means algorithm, the K-means approach was the slowest of the 405 

methods. 406 
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As can be seen in Table 2, the choice of feature vector did not significantly affect the classification 407 

performance of any of the four methods in our study, implying that changing the colour space or 408 

increasing the number of neighbours included in the feature vector was not critical. Thus, it was 409 

sufficient to build the classifiers based on 3-dimensional pixel feature vectors in the original 410 

untransformed RGB colour space. Not including the neighbourhood pixel information means 411 

ignorance of the spatial (texture) information, leaving us to conclude that the information 412 

discriminating between healthy and injured pixels was primarily present in the pixel colours rather 413 

than in the size, shape or texture of the lesions. The large variation in the size of the injured areas from 414 

small spots, a few pixels in size, to large continuous areas larger than the 5×5 neighbourhood window 415 

may be the reason why inclusion of neighbourhood information was ineffective. In other applications, 416 

larger window sizes closer to the defect size may provide improved performance of the classifier(s) 417 

(López et al., 2006; Prats-Montalbán, 2005; Prats-Montalbán and Ferrer, 2007). Not requiring 418 

neighbourhood information means less complexity and corresponding computational savings. We 419 

experienced that by expanding the neighbourhood window size from 1×1 (single pixel) to 3×3 and 5×5 420 

pixels, the computation time increased by  1.7 & 3.5 times, respectively, for the LDA classifier, 7 & 421 

590 times, respectively, for the FPM classifiers, and 7 & 20 times, respectively, for the K-means 422 

classifier.  423 

The significantly higher true positive rate of LDA indicates that this method correctly identified more 424 

of the injured pixels than the others (Table 1). A true positive rate of about 80% indicates, however, 425 

that 20% of the injured pixels were falsely identified as healthy (false negatives). The true positive 426 

rates of the three other classifiers were at the level 50-60%, indicating that they failed to identify a 427 

considerably larger fraction of the injured pixels (40-50%). LDA also provided a 2% false positive 428 

rate, thereby misclassifying very few healthy pixels as injured and correctly identifying the majority 429 

(98%) of healthy pixels. In comparison, the FPM approaches misclassified about 10% of the healthy 430 

pixels as injured whereas the K-means method had a false positive rate similar to LDA (Table 1). 431 

Consequently, it is fair to say that the LDA and K-means classifiers outperformed the FPM methods 432 

with respect to precision. It should be noted that most of the leaves had a low fraction of injured pixels 433 
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(27 of the 36 leaves had less than 20 % injured pixels in the manually created masks). Therefore, the 434 

number of misclassified pixels was low relative to the total number of pixels in the images. This 435 

results in the high overall accuracy of all methods (≥85%) and the lower precision and F-score (Table 436 

1). 437 

Figure 5 gives an overview of the classifier accuracy on each leaflet image. The accuracy of the LDA 438 

method appears as fairly stable, with only one leaflet image where the pixel classification accuracy 439 

was less than 85% (Fig. 5a, plant nr. 6, leaflet nr. 1). The performance of the other methods, 440 

particularly of the FPM approaches, was more variable, with high accuracy for some images and low 441 

for others.  442 

Figure 6 gives an overview of the defect maps of selected leaflets made by comparing the manually 443 

created masks (subjective ground-truth) and the predicted pixel classification, colour coded to show 444 

false positives in red and false negatives in blue. As depicted by the large, blue coloured areas, the K-445 

means and FPM classifiers failed to identify a large fraction of the injured pixels (false negatives). A 446 

conspicuous trend, particularly for the LDA classifier, was that the misclassified healthy pixels (false 447 

positive, red in Fig. 6) were mainly located along the borders between injured and healthy areas. This 448 

effect is especially notable in the middle column of Fig. 6, which corresponds to the leaflet classified 449 

with less than 85% accuracy by the LDA classifier (see Fig. 5a, plant nr. 6, leaflet nr. 1). These 450 

borders were difficult to set manually since the visible signs of injury faded towards healthy areas. It is 451 

therefore possible that the ground-truth mask did not correctly include the complete set of injured 452 

pixels. Hence, a considerable amount of the apparently false positives may be subject to manual 453 

reclassification after a possible second revision of the image, resulting in an adjustment of the 454 

precision rates in the classifications.  455 

Figure 7 shows the application of the four classification approaches to seven representative whole 456 

clover leaves. Based on the findings that the choice of feature vector was not critical (Table 2), a three 457 

dimensional feature vector using the original untransformed RGB colour space and no neighbourhood 458 

pixel information was used. For the LDA and two FPM methods, the pixel classification obtained for 459 
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all 100 whole leaves was identical for both training sets, with the same pixels identified as injured and 460 

healthy. Thus, including ten healthy leaves in the model training in addition to the 36 ozone injured 461 

cropped leaflet images of the first image set did not alter the pixel classification. For the K-means 462 

method, only a slight difference of 0.002% was obtained in pixel classification when using the two 463 

training sets. Thus, the 36 original leaflets of the first image set contained the necessary pixels 464 

representative of both the injured and healthy classes. The FPM-RSS approach failed to identify 465 

healthy pixels, classifying over 92% of the pixels as injured, even for healthy control leaves where 466 

99±1% (mean ± standard deviation, n=56 leaves) of the pixels were misclassified as injured (Fig. 7, 467 

top three rows). The FPM-T
2
 method performed reasonably well on ozone injured leaves (Fig. 7, 468 

bottom four rows), identifying injured pixels, but with a tendency of assigning natural variation such 469 

as leaf veins as injury. The FPM-T
2
 approach had difficult with healthy control leaves, misclassifying 470 

60±30% (mean ± standard deviation, n=56 leaves) of the pixels as injured. Thus, despite good 471 

performance in other applications, the FPM approaches were not optimal for this application. As seen 472 

in Fig. 7 (top three rows), LDA and especially the K-means method performed well on healthy control 473 

leaves, respectively misclassifying 3±2% and 0.2±0.2% (mean ± standard deviation, n=56 leaves) of 474 

the pixels as injured. Closer inspection of the leaves revealed that these misclassifications were caused 475 

by light olive coloured spots and areas and leaf hairs which appeared as light coloured streaks in the 476 

image. As ozone damaged areas usually are light brown instead of deep green, the colour of these 477 

natural features resembled ozone damage more closely than healthy regions, and were hence 478 

misclassified. This effect was particularly evident for the LDA results of the control leaf of the third 479 

row of Fig. 7. The LDA and K-means methods captured the ozone injury patterns of the ozone 480 

damaged leaves (Fig. 7, bottom four rows) with LDA predicting 5-10% more injury than the K-means 481 

classifier for all 44 ozone exposed leaves. Closer inspection of the leaves revealed that the K-means 482 

classifier did not identify some injured areas, thereby underestimating injury, as also seen in Fig. 6 483 

(blue, false negatives). Both methods correctly identify natural variations such as leaf veins and dark 484 

patches as healthy pixels.  485 

5 Conclusion 486 
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Different feature vectors and classification methods were compared to determine a robust and accurate 487 

approach for pixelwise identification of leaf surface injury from RGB images acquired using a 488 

standard digital SLR camera. Four classifiers and feature vectors including different colour and spatial 489 

information were evaluated.  490 

The LDA approach provided the best overall pixelwise classification performance with significantly 491 

higher accuracy, precision, recall and F-score than the other approaches. The LDA approach provided 492 

a high mean accuracy of 95% and was robust with relatively little variation in classification 493 

performance when tested on leaves with different degrees of injury and natural background variation. 494 

The LDA approach also performed well on whole leaves, capturing the injury patterns in damaged 495 

leaves and handling the natural surface variations in control leaves. The LDA approach was also the 496 

most computationally efficient and simplest method to implement requiring no heuristic tuning of 497 

model parameters. By inspection of the Mahalanobis distances calculated by LDA, it is also straight 498 

forward to design heuristic diagnostics for outlier detection, and thereby “weed out” future pixel 499 

vectors not sufficiently represented in the training data used for model building. 500 

The simplest feature vector requiring only colour information proved to be sufficient for leaf pixel 501 

classification. Inclusion of spatial data did not improve classification performance, but increased the 502 

computation time significantly. Transporting the MATLAB code to a faster programming language 503 

such as C, optimizing the code and using multithread code will reduce the timing costs considerably 504 

such that an LDA classification program could be included in real-time applications in, for example, 505 

precision agriculture and quality inspection.  506 

In conclusion, we have seen that the LDA classifier combined with a colour feature vector can provide 507 

rapid and accurate pixelwise identification of injury from images of leaf surfaces.  508 
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Table captions 601 

Table 1. The pixel classification performance of the four classifiers LDA, K-means, FPM-T
2
 and 602 

FPM-RSS. A feature vector with three features corresponding to the r, g and b-values from the RGB 603 

colour space for a single pixel was used (i.e. Xi =  r(n,m), g(n,m), b(n,m). for an arbitrary pixel i in row n and 604 

column m of the image,  neighbourhood window size 1 × 1). Mean values  standard deviation for n = 605 

36 cropped leaflet images of the first image set are shown. Each timing corresponds to feature 606 

extraction and pixel classification for one plant (i.e. three leaflet images, mean  standard deviation for 607 

three runs). 608 

Method Accuracy Precision 
True positive 

rate (recall) 

False positive 

rate 

F-score Timing (s) 

LDA 0.950.05 0.80.2 0.830.12 0.020.02 0.750.15 3.030.09 

K-means 0.930.05 0.80.2 0.50.3 0.030.05 0.60.3 47050 

FPM-T
2
 0.860.11 0.50.3 0.60.3 0.110.12 0.50.3 23.61.1 

FPM-RSS 0.850.12 0.20.2 0.50.5 0.120.12 0.20.2 23.961.1 
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Table 2. The pixel classification accuracy of the four classifiers LDA, K-means, FPM-T
2
 and FPM-610 

RSS using feature vectors constructed using different neighbourhood window sizes and image colour 611 

spaces. Mean values  standard deviation for n = 36 cropped leaflet images of the first image set are 612 

shown. 613 

Neighbourhood 

window size 

Colour space LDA K-means FPM-T
2
 FPM-RSS 

 

1×1 window 

RGB 0.95 0.05 0.93 0.05 0.86 0.11 0.85 0.12 

L*a*b 0.95 0.05 0.92 0.06 0.85 0.10 0.88 0.08 

USC 0.95 0.04 0.93 0.05 0.86 0.10 0.87 0.09 

 

3×3 window 

RGB 0.95 0.05 0.93 0.05 0.85 0.12 0.88 0.09 

L*a*b* 0.95 0.05 0.92 0.06 0.85 0.10 0.89 0.07 

USC 0.95 0.04 0.93 0.05 0.86 0.11 0.87 0.10 

 

5×5 window 

RGB 0.95 0.04 0.93 0.05 0.85 0.12 0.89 0.09 

L*a*b* 0.95 0.04 0.91 0.06 0.84 0.11 0.89 0.07 

USC 0.95 0.04 0.93 0.05 0.85 0.12 0.87 0.09 

 614 

  615 



28 
 

 616 

Figure captions 617 

Figure 1. Original leaf (a) where the quadratic 300 × 300 pixel areas used in the analysis of this image 618 

are shown. The corresponding leaflet images are shown in (b – d), and the manually created binary 619 

masks are shown in (e – g). Images cropped from ozone-exposed leaflets where the degree of ozone-620 

induced injury increases from slight (h) to extensive (m) are shown.  621 

 622 

  623 
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Figure 2. a) A 3×3 neighbourhood window where the centre pixel is the pixel i of interest (dark grey) 624 

and the surrounding pixels are the eight neighbours (light grey). The arrows show the direction of the 625 

unfolding starting with the left column. b) Diagram of the resulting colour-spatial feature matrix X 626 

given by Eq. 1, for an N×N RGB image, where each row represents the feature vector for a given pixel 627 

i. 628 
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Figure 3. Overview of the classification procedure showing the colour space transformation and 630 

unfolding of the input leaflet images to generate the feature training Xtrain and test Xtest matrices and the 631 

unfolding of the corresponding manually segmented binary masks to generate the Ytrain and Ytest group 632 

membership vectors.  The predicted group membership vector Ŷ was compared to the ground-truth 633 

given in Ytest to assess the performance of the classifier for pixel classification. 634 
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 636 

Figure 4. Flow chart of the Fit to a Pattern Multivariate Image Analysis classification approach. The 637 

feature matrix Xtrain used for training was mean centred using the mean of the pixels defined as 638 

healthy. A PCA model was built and used to classify the pixels in the test set Xtest, giving the predicted 639 

group membership vector Ŷ. 640 

 641 

 642 
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Figure 5.  Pixel classification accuracy of the classifiers (a) LDA, (b) K-means, (c) FPM-T
2
 and (d) 644 

FPM-RSS for all 36 cropped leaflet images. For a perfect classifier, the accuracy (*) for each leaflet 645 

would be equal to 1. A feature vector with three features corresponding to the r, g and b-intensity 646 

values of the RGB colour space for the pixel of interest was used (no neighbourhood pixel information 647 

included). The numbering 1 to 12 on the abscissa corresponds to the examined 12 clover leaves 648 

collected from 12 different plants. Each clover leaf of a given plant (numbered 1 to 12) consisted of 649 

three individual leaflets giving a total of 3 × 12 images. 650 

 651 
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Figure 6.  Original RGB images (top row) for selected leaflets and corresponding defect maps 653 

(subsequent rows) for the four classifiers LDA, K-means, FPM-T
2
 and FPM-RSS calculated using a 654 

feature vector with three features corresponding to the r, g and b- intensity values of the RGB colour 655 

space for the pixel of interest (no neighbourhood pixel information included). Each column represents 656 

one leaflet image, numbered as plant number and leaflet number, for correspondence with the abscissa 657 

in Fig. 5 (i.e. Pl. 1 - 1 corresponds to plant nr. 1, leaflet nr. 1). Leaflets Pl. 4 - 1 and Pl. 11 - 2 were 658 

slightly injured, Pl. 1 - 1 moderately injured and Pl. 6 - 1 and Pl. 6 - 2 extensively injured.  In the 659 

defect maps (rows two to five), white areas correspond to correctly classified injured pixels (true 660 

positives), black areas correspond to correctly classified healthy pixels (true negatives), red areas show 661 

healthy pixels wrongly classified as injured (false positives) and blue areas show injured pixels not 662 

detected by the classifier (false negatives).  663 

 664 

 665 

 666 

 667 
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Figure 7.  Pixel classification for seven representative whole clover leaves using the four classifiers 669 

LDA, K-means, FPM-T
2
 and FPM-RSS calculated using a feature vector with three features 670 

corresponding to the r, g and b- intensity values of the RGB colour space for the pixel of interest (no 671 

neighbourhood pixel information included). Each row gives the prediction results for one clover leaf. 672 

The original RGB images are shown in the first column and the predictions of the classifiers are 673 

shown in the subsequent columns, with pixels predicted as healthy in black and injured pixels in grey. 674 

The first three rows show healthy control leaves and rows four to seven show leaves with increasing 675 

ozone injury. 676 
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